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Abstract
Quantum analysis is reformulated to clarify its essence, namely the invariance
of quantum derivative for any choice of definitions of the differential df (A)

satisfying the Leibniz rule. This formulation with use of the inner derivation δA

is convenient to study quantum corrections in contrast to the Feynman operator
calculus. The present analysis can also be used to find a general scheme of
constructing exponential product formulae of higher order. General recursive
schemes are also reviewed with an emphasis to standard symmetric splitting
formulae. Multiple integral representations of q-derivatives are derived using
such general integral formulae of quantum derivatives as are expressed by
hyperoperators. A simple explanation of the connection between quantum
derivatives and q-derivative is also given.

PACS numbers: 02.30.Hq, 02.40.−k, 03.65.−w

1. Introduction

We have often to evaluate, in modern physics, commutators such as [f (A), B] or more
generally [f (A), g(B)] for arbitrary functions f (x) and g(x) and to expand a function
f (A + B) with respect to B for non-commutable operators A and B. Such problems have
already been studied by many authors [1–9] using Feynman’s indices [10].

The same problems have also been studied by the present author [11–16] in a different
viewpoint using the inner derivation δA defined by δAB = [A,B] = AB − BA, in order to
clarify the crossover from the classical to quantum derivatives. This quantum analysis is also
useful [17–29] in constructing exponential product formulae of higher order. A similarity
between quantum analysis and q-derivative is also discussed.
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2. Refined formulation of quantum analysis

The essence of the ordinary differential calculus is manifested in the following Taylor
expansion formula,

f (x + h) = f (x) + f (1)(x)h + · · · +
f (n)(x)

n!
hn + · · · , (2.1)

where f (n)(x) denotes the nth derivative of f (x). Even the definition of differentiation is
included in equation (2.1), as is easily seen.

Now we discuss operator functions such as f (A) and f (A + xB). If the operators A and
B commute with each other, namely [A,B] = AB − BA = 0, then we have

f (A + xB) = f (A) + xf (1)(A)B + · · · +
xn

n!
f (n)(A)Bn + · · · , (2.2)

where f (n)(A) is an operator function obtained by replacing the c-number variable x with the
operator A in the ordinary nth derivative f (n)(x).

The purpose of the present paper is to give a refined formulation of quantum analysis
proposed by the present author [11–16] in a general situation where A and B do not commute
with each other. We try to expand the operator function f (A + xB) in a power series of x as
follows:

f (A + xB) =
∞∑

n=0

an(A,B)xn. (2.3)

Clearly, the coefficient operator an(A,B) is given by

an(A,B) = 1

n!

[
dn

dxn
f (A + xB)

]
x=0

. (2.4)

Each an(A,B) is composed of many products of A and B of different order, and it seems to
be very complicated to treat analytically because of the noncommutativity of A and B. Our
quantum analysis gives a convenient expression [11–16] to each an(A,B) in terms of the
commutable hyperoperators δA and LA (=A) defined by LAQ = AQ. This is performed by
expressing an(A,B) in the form

an(A,B) = f̂ n(A, {δj })Bn, (2.5)

where the hyperoperator δj is defined by

δjB
n = Bj−1(δAB)Bn−j (2.6)

for j = 1, 2, . . . , n. The operator A in f̂ n(A, {δj }) is interpreted as such a hyperoperator
as multiplies A to Bn from the left-hand side (namely ABn). Note that A and δA commute
with each other. This is the reason why the hyperoperator f̂ n(A, {δj }) is convenient to
treat analytically once it has been obtained explicitly [11–16]. Furthermore, we introduce
the concept of quantum derivative, namely the quantum derivative of f (A) with respect to
the operator A itself, and we write it as df (A)/dA analogously to the ordinary derivative
df (x)/dx. However, the meaning of the former is quite different from the latter, namely
it is a mapping operator (or hyperoperator) to map Bn to the operator an(A,B) defined by
equation (2.4). Thus, our quantum derivative or hyperoperator dnf (A)/dAn is defined as

dnf (A)

dAn
≡ n!f̂ n(A, {δj }). (2.7)
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In order to find an explicit and compact expression of f̂ n(A, {δj }) or dnf (A)/dAn, we
start with a simple operator function f (A) = Am+n where m is a positive integer. First note
that for f (A) = Am+n we have

an(A,B) = 1

n!

[
dn

dxn
(A + xB)m+n

]
x=0

=
∑

k1+···+kn+1=m,kj �0

Ak1BAk2 · · · AknBAkn+1

≡ {AmBn}sym(A,B). (2.8)

Here, {AmBn}sym(A,B) denotes the symmetrized product. This sum of products is easily
expressed using Feynman’s indices in the Feynman operator calculus [9, 10]. However, it
is inconvenient to study quantum effects. One of the purposes of our quantum analysis is
to make such a formulation able to express quantum corrections explicitly. One of the key
formulae for this purpose in our quantum analysis is the following [15]:

{AmBn}sym(A,B) = (m + n)!

m!

∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

(
A −

n∑
j=1

tj δj

)m

Bn. (2.9)

This can be proved by mathematical induction. For n = 1, we have

{AmB}sym(A,B) = (m + 1)

∫ 1

0
dt (A − tδA)mB, (2.10)

because the right-hand side of equation (2.10) is integrated as

[−(A − tδA)m+1/δA]1
0B = [(Am+1 − (A − δA)m+1)/δA]B

=
m∑

k=0

Am−k(A − δA)kB = {Am,B}sym(A,B). (2.11)

Here, the symbol 1/δA seems to be strange at a glance, because δ−1
A does not exist. However,

the numerator (Am+1 − (A− δA))m+1 contains the factor δA and consequently the ratio of these
two hyperoperators can be defined uniquely. Here we have also used the following simple
relation [11]:

(A − δA)kB = BAk (2.12)

for any positive integer k, or more generally

f (A − δA)B = Bf (A) or δf (A) = f (A) − f (A − δA) (2.13)

for any analytic function f (x).
If we assume that equation (2.9) holds for n − 1, then it is shown to hold also for n, using

the following important transformation formula [16]:

Bf1(A)Bf2(A) · · · Bfn(A)

= f1(A − δ1)f2(A − δ1 − δ2) · · · fn(A − δ1 − δ2 − · · · − δn)B
n (2.14)

for any analytic functions {fj (x)}.
Thus, we find that for f (A) = Am+n we have

an(A,B) = f̂ n(A, {δj })Bn

=
∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnf

(n)


A −

n∑
j=1

tj δj


Bn. (2.15)
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Therefore, the above relation (2.15) holds for any analytic function f (x), namely we arrive
finally at

dnf (A)

dAn
= n!

∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnf

(n)


A −

n∑
j=1

tj δj


 (2.16)

or

f (A + xB) =
∞∑

n=0

xn

n!

dnf (A)

dAn
Bn. (2.17)

This is one of our main formulae in quantum analysis. If A commutes with B, then {δj } in
the above formula are unnecessary. Thus, equation (2.17) together with equation (2.16) is
reduced to equation (2.2) in this case. The convergence of the above expansion is proved in
the Banach space [11] and for some restricted unbounded operators [14].

The difference between the present formulation and the Feynman operator calculus [9]
is slight in the first-order derivative but it is substantial in higher-order derivatives, as is seen
from the above general formula (2.16).

3. Generalization of quantum analysis

In the preceding section, we have studied the operator Taylor expansion of f (A + xB) and
have defined the nth quantum derivative dnf (A)/dnA. However, there are many other ways
to define them. As in [1], we may start with the following Gâteau differential:

df (A) = lim
h→0

f (A + h dA) − f (A)

h
, (3.1)

for any operator dA or with the commutator

df (A) = [H, f (A)] (3.2)

for a certain fixed operator H, as in [3]. It is well known that the above two differentials satisfy
the Leibniz rule

d(f (A)g(A)) = (df (A))g(A) + f (A) dg(A). (3.3)

Then, it is generally shown [16] that we have

df (A) = δf (A)

δA

dA namely
df (A)

dA
= δf (A)

δA

(3.4)

because

d(Af (A)) = d(f (A)A), (3.5)

namely

(dA)f (A) + A df (A) = (df (A))A + f (A) dA (3.6)

owing to the Leibniz rule (3.3). This yields

[A, df (A)] = [f (A), dA] (3.7)

or

δA df (A) = δf (A) dA. (3.8)

It is instructive to remark that the quantum derivative df (A)/dA is expressed by the ratio

δf (A)

δA

= (f (A) − f (A − δA))

δA

=
∫ 1

0
f (1)(A − tδA) dt (3.9)
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because the above second expression is denoted by the difference of hyperoperators and
because its connection with the ordinary (or classical) derivative is transparent. (In fact, it is
reduced to f (1)(A) in the limit δA → 0.)

Similarly for higher-order quantum derivatives, we can repeat the above procedure.
Namely from the identity dn(f (A)g(A)) = dn(g(A)f (A)), we obtain the following formula:

dnf (A) = dnf (A)

dAn
(dA)n (3.10)

with the same expression (2.16) for any definition of the quantum differential df (A). This
shows that the quantum derivative is invariant [16] for any choice of definitions of the
differential satisfying the Leibniz rule, though dnf (A) and (dA)n depend on the definitions.

4. Applications of quantum analysis

A simple application of quantum analysis is to evaluate the commutator [f (A), g(B)] for
arbitrary analytic functions f (x) and g(x). It is expressed in the form

[f (A), g(B)] =
∫ 1

0
ds

∫ 1

0
dtf (1)(A − sδA)g(1)(B − tδB)[A,B]. (4.1)

This is derived as follows:

[f (A), g(B)] = δf (A)g(B) = df (A)

dA
δAg(B)

= df (A)

dA
δg(B)(−A) = df (A)

dA

dg(B)

dB
δB(−A)

= df (A)

dA

dg(B)

dB
[A,B], (4.2)

where we have used formulae (3.4) and (3.5).
In particular, we have

[exA, eyB ] =
∫ x

0
ds

∫ y

0
dt e(x−s)A e(y−t)B [A,B] etB esA, (4.3)

where we have made use of the identity

exδAQ = exAQ e−xA. (4.4)

Equation (4.3) yields Kubo’s identity [33]

[e−βH, A] =
∫ β

0
dλ e−(β−λ)H[A,H] e−λH (4.5)

by putting x = 0 after the differentiation of both sides of equation (4.3) with respect to x. This
identity is rewritten as

[e−βH, A] = ih̄
∫ β

0
e−βHȦ(−ih̄λ) dλ (4.6)

with

Ȧ(t) = eitH/h̄Ȧ e−itH/h̄ and Ȧ = i

h̄
[H, A] (4.7)

for the Hamiltonian H of the relevant system. An alternative interpretation of equation (4.5)
yields

d e−βH = −
∫ β

0
dλ e−(β−λ)H(dH) e−λH (4.8)
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through definition (3.2). The above relation (4.6) plays an important role in the linear response
theory [33].

At a glance, the right-hand side of equation (4.3) seems to be more complicated than the
left-hand side. However, this transformation is sometimes useful, for example, in evaluating
the norm of [exA, eyB ], because the right-hand side of equation (4.3) is a single product of
the commutator [A,B] with the two types of exponential operators, whose norm is easily
evaluated.

Another example is to extend [13, 27] the Baker–Campbell–Hausdorff (BCH) formula.
The original BCH formula is given in the form

exA exB = exp
(
x(A + B) + 1

2x2[A,B] + · · · ) (4.9)

The essence of the BCH formula is that the exponential part of equation (4.9) is a linear
combination of (A + B) and commutators of A and B. Our quantum analysis is useful in
studying the operator function �(x) defined in

eA1(x) eA2(x) · · · eAr(x) = e�(x) (4.10)

for an arbitrary set of operators {Aj(x)} and for an arbitrary positive integer r. Here we assume
that Aj(0) = 0 for all j and consequently that �(0) = 0. As a generalization of the BCH
formula, the operator function �(x) in equation (4.10) is expressed [13] in terms of {Aj(x)}
and their commutators (free Lie elements). By differentiating both sides of equation (4.10),
we obtain

d e�(x)

d�(x)

d�(x)

dx
=

r∑
j=1

eA1(x) · · ·
(

d

dx
eAj (x)

)
· · · eAr(x). (4.11)

Here, the quantum derivative d e�(x)/d�(x) denotes a hyperoperator given by [11–16]

d e�(x)

d�(x)
= e�(x)�(−�(x)) and �(A) = eδA − 1

δA

. (4.12)

After some calculations, we finally arrive at

d�(x)

dx
= �−1(−�(x))

r∑
j=1

exp(−δAr (x)) · · · exp(−δAj+1(x))�(−Aj(x))
dAj(x)

yx

= �−1(−�(x))

r∑
j=1

exp(δA1(x)) · · · exp(δAj−1(x))�(Aj (x))
dAj(x)

dx
, (4.13)

with �(−A) = e−δA�(A) and

�−1(�(x)) = δ�(x)

exp δ�(x) − 1
. (4.14)

Here we have used the specific relation

�−1(−�) = �−1(�) exp(δA1) · · · exp(δAr
), (4.15)

which is valid only for the operator function � defined in equation (4.10).
Since �−1(�(x)) is expressed in terms of δ�(x) through relation (4.14) and in turn δ�(x)

is expressed by

δ�(x) = log eδ�(x) = log[exp(δA1(x)) · · · exp(δAr (x))], (4.16)

we obtain the solution of the differential equation with the initial condition �(0) = 0 in the
form [3]

�(x) =
r∑

j=1

∫ x

0
h(t) exp(δA1(t)) · · · exp(δAj−1(t))�(Aj (t))

dAj(t)

dt
dt, (4.17)
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where

h(t) = log[exp(δA1(t)) exp(δA2(t)) · · · exp(δAr (t))]

exp(δA1(t)) exp(δA2(t)) · · · exp(δAr (t)) − 1

=
∞∑

n=1

1

n
[1 − exp(δA1(t)) exp(δA2(t)) · · · exp(δAr (t))]

n−1 (4.18)

This is a very useful formula in practical applications. In fact, when A1(x) = xA1 = xA and
A2(x) = xA2 = xB (for r = 2), we obtain [13]

�(x) ≡ log(exA exB) =
∞∑

n=1

1

n

∫ x

0
(1 − etδAetδB )n−1(A + etδAB) dt. (4.19)

This yields an explicit expression of the BCH formula, which is useful in studying exponential
product formulae of higher order, as will be discussed in the succeeding section. The
above formulae (4.17) and (4.19) show explicitly that the exponential part �(x) is a linear
combination of {Aj } and their commutators, as was proved by Baker and Hausdorff. In other
words, the above formulation gives an alternative proof of their theorem.

5. Exponential splitting formulae of higher order

As was discussed systematically by the present author and his collaborators [20–24, 26, 27],
the exponential operator ex(A+B) is split in the form

ex(A+B) = fm(xA, xB) + O(xm+1), (5.1)

with

fm(xA, xB) = et1xA et2xB et3xA et4xB · · · etMxA. (5.2)

The splitting parameters {tj } can be determined by the requirement that

�m(x, {tj }, A,B) ≡ log fm(xA, xB) = x(A + B) + O(xm+1) (5.3)

using formula (4.16) or an extension of (4.18) to general r, namely

�(x) ≡ log(exA1 exA2 · · · exAr )

=
∞∑

n=1

r∑
j=1

1

n

∫ x

0
dt (1 − exp(tδA1) · · · exp(tδAr

)]n−1

× exp(tδA1) · · · exp(tδj−1)Aj . (5.4)

For explicit calculations of {tj }, see [11–16].
An alternative method to find higher-order splitting formulae is to make use of the recursive

scheme discovered by the present author [17].
The mth-order formula fm(xA, xB) is constructed recursively by the product of the form

fm(xA, xB) = fm−1(p1xA, p1xB)fm−1(p2xA, p2xB) · · · fm−1(prxA, prxB). (5.5)

under the conditions [17]

p1 + p2 + · · · + pr = 1, (5.6a)

and

pm
1 + pm

2 + · · · + pm
r = 0. (5.6b)
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The above second equation (5.6b) is easily derived from the observation that the lowest
correction term of the product (5.5) to the true exponential operator exp(x(A + B)) is
proportional to the sum

(
pm

1 + pm
2 + · · · + pm

r

)
.

For example, we have the following so-called standard higher-order recursive symmetric
formula [17, 18]

S2m(x) = S2
2m−2(p2mx)S2m−2((1 − 4p2m)x)S2

2m−2(p2mx) (5.7)

with S2(x) = e
x
2 A exB e

1
2 xA and

p2m = 1

4 − 41/(2m−1)
. (5.8)

This is called a zig-zag decomposition [17–20].

6. Multiple integral representations of q-derivatives

Euler’s identities, the Jacobi identity, Heine’s formula and the Ramanujan formula have been
effectively used in mathematical physics [9]. The following q-derivative is useful in studying
these identities and formulae.

As was shown in equation (3.4), the quantum derivative df (A)/dA is expressed by the
ratio of the hyperoperators δf (A) and δA, where δf (A) = f (A) − f (A − δA). It should
be remarked that δf (A) is expressed by the difference of two hyperoperators. This yields
the noncommutativity effect of A and dA. This structure of difference reminds us of the
q-derivative Dq defined by [34]

Dqf (x) = f (qx) − f (x)

(q − 1)x
≡ dqf (x)

dqx
(6.1)

for an ordinary function f (x). Clearly we have

Dq→1f (x) = f (1)(x), (6.2)

when f (x) is analytic. It is easy to show that

D2
qf (x) = f (q2x) − (q + 1)f (qx) + qf (x)

q(q − 1)2x2
. (6.3)

An explicit expression of Dn
qf (x) for an arbitrary positive integer n seems to be rather

complicated. However, we have clearly

Dn
q→1f (x) = f (n)(x) (6.4)

by definition (6.1), as it should be. Thus, there is a certain possibility of expressing Dn
qf (x) in

terms of f (n)(x). In order to solve this problem, our general multiple integral representation
of dnf (A)/dAn in equation (2.16) is very suggestive. In fact, after some considerations, we
obtain the following desired expression:

Dn
qf (x) = [n]q!

∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnf

(n)({1 + (q − 1)(t1 + t2q + · · · + tnq
n−1)}x),

(6.5)

where

[n]q = 1 + q + q2 + · · · + qn−1 (6.6)

and

[n]q! = [1]q × [2]q × · · · × [n]q . (6.7)
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For example, we have

Dqf (x) =
∫ 1

0
f (1)((1 + (q − 1)t)x) dt, (6.8)

which is easily integrated to give the result (6.1). Furthermore, we have

D2
qf (x) = [2]q

∫ 1

0
dt

∫ t

0
dt ′f (2)((1 + (q − 1)(t + qt ′)x), (6.9)

which gives again the result (6.3). In principle, we can perform this procedure. However, it is
convenient for proving the general expression (6.5) to make use of mathematical induction as
follows. We assume that equation (6.5) holds for n − 1. Then, we obtain

Dn
qf (x) = [n − 1]q!

∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−2

0
dtn−1

×Dqf
(n−1)({1 + (q − 1)(t1 + t2q + · · · + tn−1q

n−2)}x)

= [n − 1]q!
∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−2

0
dtn−1 × 1

(q − 1)x

× [f (n−1)({1 + (q − 1)(t1 + t2q + · · · + tn−1q
n−2)}qx)

− f (n−1)({1 + (q − 1)(t1 + t2q + · · · + tn−1q
n−2)}x)]

= [n]q!
∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

× f (n)({1 + (q − 1)(t1 + t2q + · · · + tnq
n−1)}x). (6.10)

The last equality in equation (6.10) is derived by putting t = 1, x1 = (q − 1)x, x2 =
(q − 1)qx, . . . , xn = (q − 1)qn−1x in the following relation [6]:

(x1 + · · · + xn)

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnf

(m+1)


tx +

n∑
j=1

tj xj




=
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−2

0
dtn−1

×

f (m)

(
t (x + x1) +

n−1∑
j=1

tj xj+1

)
− f (m)


tx +

n−1∑
j=1

tj xj





 , (6.11)

which holds for any positive integers m and n, for arbitrary variables {xj }, and for an arbitrary
analytic function f (x). A simple proof of equation (6.11) is given by differentiating fn(t),
which is defined by the left-hand side of equation (6.11) minus the right-hand side and by
noting that fn(0) = 0 and f ′

n(t) ≡ 0, which is derived by assuming fn−1(t) ≡ 0. This
gives fn(t) ≡ 0 by mathematical induction, using f1(t) ≡ 0. It is evident that equation (6.5)
holds in the case n = 1. Thus, we finally arrive at the general formula (6.5) by mathematical
induction. The relation between q-derivatives and ordinary higher-order derivatives f (n)(x)

is transparent in representation (6.5). That is, we have equation (6.4) by putting q = 1 in
equation (6.5).

It will also be instructive to discuss here explicitly the relation between the quantum Taylor
expansion formula (2.17) with equation (2.16) and the general higher-order q-derivative (6.5).

For this purpose, we study the operator function f (A + xB) when BA = qAB for a
number q commuting with both A and B. Noting that δAB = (1 − q)AB in this case and
consequently that

δjB
n = Bj−1(δAB)Bn−j = (1 − q)qj−1ABn, (6.12)
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we obtain, from (2.16),

1

n!

dnf (A)

dAn
Bn =

∫ 1

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnf

(n)({1 + (q − 1)(t1 + t2q + · · · + tnq
n−1)}A)Bn

= 1

[n]q!
(Dn

qf (A))Bn (6.13)

using the general formula (6.5) for x → A (operator). In particular, if q = 1 (namely, A

and B are commutable), then we obtain the expansion formula (2.2), using [n]q=1 = n and
equation (6.2), as it should be.

Now we give here a simple explanation both for the validity of the general multiple integral
representation (6.5) of Dn

qf (x) and for the specific relation (6.13) in the case BA = qAB.
First we rewrite Dqf (A) and df (A)/dA as

Dqf (A) = f (A + �qA) − f (A)

�qA
(6.14)

with �qA = (q − 1)A and

df (A)

dA
= f (A + δ̃A) − f (A)

δ̃A

(6.15)

with δ̃A = −δA, respectively. The structures of the above two expressions are quite similar,
though the first one is an operator and the second one is a hyperoperator. Thus, if the condition

(�qA)B = δ̃AB (6.16)

is satisfied for some operator B, then the above two expressions (6.14) and (6.15) play the
same role when they operate on B from the left-hand side. Condition (6.16) is equivalent to
the relation BA = qAB. This explains the above mechanism why our quantum analysis is
formally related to the q-derivative of a c-number function.

There are many other applications of the general formula (6.5), which will be published
in the near future.

7. Deriving systematically quantum corrections

The above integral representations of quantum derivatives and q-derivatives are convenient for
studying quantum corrections. In fact, we have

dnf (A)

dAn
= f (n)(A) +

∞∑
m=1

n!(−1)m

m!
f (n+m)(A)

∫ 1

0
dt1 · · ·

∫ tn−1

0
dtn


 n∑

j=1

tj δj




m

(7.1)

and

Dn
qf (x) = f (n)(x)

[n]q!

n!
+

∞∑
m=1

[n]q!(q − 1)m

m!
f (n+m)(x)

∫ 1

0
dt1 · · ·

∫ tn−1

0
dtn


 n∑

j=1

tj q
j−1x




m

= f (n)(x) + (q − 1)

{
n(n − 1)

4
f (n)(x) +

nx

2
f (n+1)(x)

}
+ · · · . (7.2)

Thus, our quantum analysis based on the hyperoperators A (=LA) and δA is very convenient
to study the crossover between classical and quantum behaviours.
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8. Conclusion

A refined formulation of quantum analysis has been made to express quantum derivatives
in terms of the inner derivation δA and this result has been extended to a general case in
which the Leibniz rule is satisfied. These results have been shown to be useful in evaluating
commutators such as [f (A), g(B)]. We have also shown that we can easily derive quantum
corrections systematically using our integral representation (2.16) of quantum derivatives.
This is a big contrast to the Feynman operator calculus based on Feynman’s indices by which
quantum derivatives are expressed in such forms as given in the second line of equation (2.8).
Higher-order exponential formulae have also been reviewed from the above viewpoint.
Multiple integral representations of q-derivatives have been derived, which give a new scheme
to study quantum calculus [34]. A simple explanation of the connection between the quantum
derivative df (A)/dA and the q-derivative Dq has also been given.

Note added in proof. For some implications of the present quantum analysis, see also the following references.
Abe M, Ikeda N and Nakanishi N 1997 J. Math. Phys. 38 549
Bhatia R, Singh D and Sinha K B 1998 Commun. Math. Phys. 191 603
Bhatia R and Sinha K B 1999 Lin. Algeb. Appl. 303 231
Bhatia R and da Silva J A T 2002 Lin. Algeb. Appl. 341 391
Hasegawa H 2003 Infinite Dimen. Anal., Quantum Probab. Relate. Top. 6 413
Hatano N 2005 J. Phys. Soc. Japan 74 3093
Majewski A and Marciniak M 2005 On quantum Lyapunov exponent Preprint quant-phys/0510224
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